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Abstract. We consider directed percolation on the square lattice, with probability p d p V )  
for the horizontal (vertical) bonds to be unbroken. For pH = 1 - E  ( E  small) and p~ > V ( E )  

the percolating cluster is asymptotically within a cone b+ < b  < b- .  We calculate b+ and 
the fluctuations of the boundaries at C#J = b+ as power series in E. ,  up to terms - - E ' ,  showing 
that the transverse spread of the percolating cluster is randomwalk-like. For any given 
pH we also calculate the percolation threshold P ~ , ~ ( E ) ,  defined by q5+ = 4- at p, ,  = pV.c. 

1. Introduction 

There exist a large number of problems, ranging from high-energy physics (Moshe 
1978) via astronomy (Schulmann and Seiden 1982) and chemistry (Schlogl 1972) to 
epidemiology (Griffeath 1979), which only recently have been recognised (Grassberger 
and de la Torre 1979, Cardy and Sugar 1980) to be related to directed percolation. 
(Broadbent and Hammersley 1957, Blease 1977, Obukhov 1980, KertCsz and Viczek 
1980, Dhar and Barma 1981, Kinzel and Yeomans 1981).$ 

Let us for the moment concentrate on the specific problem of directed bond 
percolation on a square lattice, with probability pH for horizontal bonds to be unbroken 
and pv for vertical ones (see figure l ( a ) ;  other cases will be discussed later). 

For the symmetric case pH = pv, the critical properties are known in considerable 
detail (Moshe 1978, Grassberger and de la Torre 1979, Cardy and Sugar 1980, 
Broadbent and Hammersley 1957, Blease 1977, Obukhov 1980, KertCsz and Viczek 
1980, Dhar and Barma 1981, Kinzel and Yeomans 1981). In particular, percolation 
occurs at p c  = 0.645, and the percolating cluster (for p > p c )  is essentially confined to 
a cone of width A 4  - ( p  -pc)0 .63  around the diagonal (see figure 2(a)) .  At the edges 
4 = 45"* A412 of this cone, the density of sites connected to the origin decays like 
an error function with a width increasing as fi (R being the distance from the 
origin) (Grassberger and de la Torre 1979). This suggests that the transverse spread 
of the percolating cluster with increasing R is essentially random-walk-like, 

The asymmetric case pH>pv  was first studied by Domany and Kinzel (1981). In 
this case we expect the percolating cluster, €or ~ ~ > p ~ , ~ ( p ~ ) ,  to be confined to a cone 
4- < 4 < 4+ (see figure 2 ( a ) ) .  The critical point pv,c is defined by 4+ = 4- at pv = 
Somewhat arbitrarily, Domany and Kinzel defined another 'percolation threshold 
PDK by 4 + ( p v  = PDK) = 45", i.e. for given PH, PDK is the threshold of pv above which 

+ On leave of absence from Department of Physics, University of Wuppertal, West Germany. 
f Percolation was not mentioned in Grassberger and de la Torre (1979), but the fact that reggeon theory 
is essentially a percolation problem has already been observed in Grassberger (1977). 
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the diagonal is within the percolating cluster. More generally, for any angle 4 
(0 < 4 < 90") and for sufficiently large pH, we can define thresholds p:)  analogous to 
the Domany-Kinzel threshold by demanding 4*(pV = p : ) )  = 4. This is illustrated in 
figure 3, where PDK and p$% are drawn together with pv,c. Domany and Kinzel 
found that, for pv #pH, the behaviour near pv=pDK is different from the symmetric 
case. This should not surprise us, as it is the behaviour near p v z p v , c  which should 
be universal. 

For the case p H =  1 they were able to solve the model completely, and it was 
subsequently pointed out by Wu and Stanley (1982) that this case is exactly a 
random-walk model. 

In the present paper we shall consider the case where pH is close to 1. More 
precisely, we shall put pH = 1 - E  and calculate 4* as power expansions in E .  In 
addition, we shall calculate the fluctuations of the boundaries at c$+ and 4- ,  verifying 
the random-walk-type behaviour up to O(E*) .  From this we calculate PDK perturba- 
tively, in very good agreement with the result of Domany and Kinzel (1981). 

An important property of this model is its symmetry under the exchange 4 -* 
90"-4, p v - p ~ ,  corresponding to a reflection about the diagonal in figure l ( a ) .  This 
implies 

(1) 4- (pv ,  PH) = ~ O " - ~ + ( P H ,  PV).  

In the domain pv =pH -- 1 we can calculate both sides independently, providing a very 
welcome test. 

In order to calculate pv,c, we have to put 4+ = &. As we shall see, inserting here 
the values of 4- computed directly does not produce reliable results. However, using 
equation (1) to compute 4- yields values of pv,c which converge rapidly with increasing 
order of E .  Also, the order E *  result for the symmetric case pH = pv agrees nicely 
with Kinzel and Yeomans (1981). 

2. The perturbation expansion 

Let us first redraw figure l(a) and 2(a )  in a skew coordinate system such that the 
resulting figures are l (b )  and 2 ( b )  respectively. The advantage of this new representa- 
tion is that all points connected by the same number n of bonds to the origin occupy 
now one column of a square lattice. Let us denote by 'i' the other coordinate of the 
lattice. 

It is most natural to regard n as a time variable and i as a space coordinate. A 
particular realisation would then be an epidemic process on a (1 + 1)-dimensional 
lattice, where each site can infect its upper neighbour with rate pv and can recover 
(without immunisation) with rate E .  The infinite cluster comprises then all infected 
space-time points, starting with one or more infected sites at time n = 0. The 'front' 
of the infinite cluster at time n is defined as the point with maximal i and the 'trailing 
edge' by the point with minimal i. 

Let us denote by P r ' ( i )  (PL-)(i)) the probability that the front (trailing edge) in 
the nth column is at row i. Next we attribute to each lattice site (i, n )  a variable Xi," 
such that 

1 if site (i, n )  belongs to the infinite cluster 
if it does not. (2) xi," = [ 
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Figure 2. Percolating cluster (heavy points); its boundaries are asymptotically at C$ = C$*. 
( b )  is the same as ( a )  but redrawn on a lattice stressing the 'time' coordinate n. 

Then we can study the probabilities 

P r ) ( i ; t l , t 2  . . . . .  tk)=prob(frontati;Xi- l ,n=51,Xi-z ,n=t2,  . . . , ~ * - k . ~ = 5 k )  (3) 

that the front is at i and the k sites next to it have 'occupancies' Xi-i = ti. Furthermore, 
we shall need the probabilities 

that Xi-j =ti, irrespective of the position of the front. Probabilities PL-)(i; 61, . . . .  & )  
and Q',-'([l,  . . . .  & )  referring to the occupancies Xi+i =ti of the sites close to the 
trailing edge are defined analogously. 

pv =-pv,c: 
Our method is based on the following two hypotheses, supposed to be valid for 

( A )  For any infinite cluster occupying finitely many points in the first column n = 0, 
the probabilities Q',"([l, .... & )  tend with n -P 00 towards unique limiting distributions 
Q(*)(61, * - , 6 k ) .  

(B) For small E we can assume 

QF'(61, * 9 9 9 6 )  = O(E ") 
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where 

is the number of sites next to the front (edge), with distance s k ,  which do not belong 
to the infinite cluster. For n +CO this property carries over to Q‘*’(tl, . . , , &). 

We have no rigorous proof of property ( A ) .  We have verified it, however, to the 
lowest non-trivial order in E (i.e. accepting property (B)) .  

Property ( B )  can be proven, for finite n, by induction. Let us assume it for a 
certain value of n. In going from the nth to the ( n  + 1)th column, the number v of 
sites not belonging to the infinite cluster can increase only if ( a )  the vertical bonds 
between ( i  * j ,  n )  and ( i  * j ,  n + 1 )  are broken, or ( b )  the front recedes (trailing edge 
proceeds) since the bond between (i, n )  and ( i ,  n + 1 )  is broken. Since both occur only 
with probability E ,  we thus see that property ( b )  holds also for n + 1 .  This does not 
yet show that equation ( 5 )  holds for any infinite cluster, as it does not need to hold 
for n = 0. Due to property (A) ,  however, it is sufficient to consider only those clusters 
for which it does hold for n = 0. Notice, that we have no rigorous proof that property 
( B )  holds for n + 00. But again, we shall verify this perturbatively. 

It is straightforward (although increasingly tedious with increasing order in E )  to 
set up the systems of master equations for the probabilities P ? ) ( i ;  51, . . . , & ) a  The 
lowest non-trivial approximation for P r ) ( i ;  tl), for example, reads 

~2~ ( i ;  1 )  = p V [ l  - F (1 -pv)]p‘n‘’(i - 1; 1) +pVp!,+’(i - I ;  0) 

+ ( 1  - p v ) [ l  - 2~ (1 - - p V ) ] ~ r ’ ( i ;  1 )  
+pv(1-pv)p‘n‘’(i; O ) + E ( I - p V )  2 P ,  ( + I  ( i + I ;  1 ) + 0 ( e 2 )  (7) 

P!,+’(i; 0) = ~ p V ( 1  -pv)p;’ ( i  - 1 ; 1 )  + E ( 1  - p v )  P ,  ( i  ; 1 )  + ( 1  -pv) P ,  (i ; 0) + o ( E  ’ 1 .  
(8) 

Denoting established bonds by full arrows and broken bonds by broken arrows, the 
first term of equation(7) is the sum of the two graphs-with weights pvpH and ~ C E  
respectively- 

2 (+) 2 ( + I  

1 - 2  . . ./ . 
n n + l  n n t l  

The second term in equation (7) can analogously be represented as 

n n + l  

Actually, the contribution of this graph is pvpHPr’ ( i  - 1 ;  0 ) ,  but neglecting terms of 
order e 2  we arrive at the term in equation (7). The other terms in equations (7) and 
(8) are obtained in the same way. 
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Master equations for Q',"(tl,. . . , tk )  can now be obtained by summing over the 
position i of the front (or trailing edge). Including terms of order E we obtain 

Qr21(1) = [ 1 - E  (1 -pv)]Qr'( I )  +pv(2-pv)QI;C'(O) + O(E 2 ,  

Qr-1 (0) = ~ ( 1  - p v ) Q r ' ( l )  + ( 1  -pv)Q' , ' ' (O)+0(~~) (9) 

and 

Qi-Ji(1) = [ 1 - E (1 - p v ) ] Q  L-' (1 1 + PvQL-' (0) + O(E 2 ,  

Q L ? I ( O ) = E ( ~  -Pv)QL-'(l)+(l -P~)Q!,-'(O)+O(E~). 
(10) 

One sees that indeed both equations have stationary solutions, with 

Q"'(0) = E l-pv +O(E2) 

Q ' - ' ( O )  = E - -Pv+O(&2) 

pv(2 -Pv) 

Pv 
and 

Q'*)(l) = 1 - Q(*'(O). 

In a similar way one can construct an equation governing the average front (or 
trailing edge) position 

Including terms of order s 2  we find 

(i)!,?21= (i):' + p v  - E (1 --pVl2 - E 2(1 - p  v l3 - E (1 -pv)Q!,+'(O) 

(i)L?l= ( i ) L - ' + E  + s 2 ( 1 - p v ) + ~ ( 1 - p v ) Q ~ ~ ' ( 0 ) .  (16) 

(15) 

Inserting equations (11) and (12), and transforming back to the original coordinates, 
we find 

and similarly 

t a n 4 - = E  + E 2 / p V + ~ ( ~ 3 ) .  (18) 
For pv = 1 - S with S << 1 one checks that indeed 

tan d - ( ~ ,  S )  = [tan d + ( ~ ,  E )  + o(~~l1-l + o(s~).  (19) 
A similar analysis shows that the dispersion D, of the position of the front increases 

linearly with n ,  
D"' = 2 ( + I  ( + I  2 

n + l  - ( i  ) , ,+l-((i) , ,+d 
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and similarly for the trailing edge 

This indidates clearly that the transverse growth of the cluster is essentially a random 
walk. 

Neglecting terms of order E ~ ,  the threshold p y )  defined in the introduction is 
obtained from equation (17) as 

E 1 l )  (22) +&*( tan4  - ( 2 + t a n d ) - l + t a n 4 ) 3  ’+ - 1 + t a n 4  (1+tan4)’  

The Domany-Kinzel threshold, in particular, is 

tan 4 + (+) - 

(23) 

Values of A E P D K / P H  calculated from this are plotted in figure 4 together with the 
results of Domany and Kinzel (1981), showing excellent agreement. In particular, 
we get pV,= = 0.625, in surprisingly good agreement with the value p c  = 0.645 of Kinzel 
and Yeomans (1981). 

In order to calculate the critical bond probability pv,c, we have to equate 4+ and 
4-. Before doing this, we have to decide whether we should calculate 4- from 
equation (18) or from equations (1) and (17). A priori, neither of the two methods 
seems preferable, since we have to use them both outside.their supposed domains of 
validity. Plotting curves c$* = const, calculated from equations (17) and (18), versus 
pv and PH, we found that 4- deteriorates very rapidly as soon as one leaves the 
domain E << pv. In contrast, q5+ remains an excellent approximation also for large E ,  

provided pv 3 E. 

( + I  -1 1 5 2 
P D K = P 4 5 ’  - 2 + a &  . 

PH 

Figure 3. Percolating and non-percolating regions, separated by pv = pv,c (full curve); 
broken line, pv = PDK = p!$; dotted line, pv = p$& (lower part) and pv = (upper 
part). 
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Figure 4. Domany-Kinzel threshold for percolation along I$ = 45": full curve, finite-size 
scaling result of Domany and Kinzel (1981); broken curve, result of equation (23). 

Thus we computed p v = p g l ( p H )  and p H = p & , ( p v )  from equation (22). The 
intersection of these curves yields pv .= .  The result is shown in figure 3 together with 
pEi5"  and P D K .  We might mention that the order E results (computed by dropping 
the last term in equation ( 2 2 ) )  are very similar, indicating a fast convergence of the 
expansion. 

We might add that we cannot compute critical exponents, as in any perturbative 
calculation. 

3. Discussion 

( a )  As we have already mentioned, including higher orders in E would be extremely 
tedious. Except for this, however, there does not seem any problem. 
( b )  There does not seem any problem either in applying our method to other directed 
percolation problems in which bonds in at least one direction are unbroken with 
probability near to unity. One example would be the triangular lattice model studied 
by Wu and Stanley (1982). Another example is the model of Grassberger and de la 
Torre (1979). The method used in appendix B of that paper to estimate the kink 
velocity for small k is indeed the lowest order of the systematic approach of the 
present paper. 
( c )  As a generic rule, it seems that one needs the distributions Q'*' to order E' if one 
wants to compute q5* to order E ' + ' .  However, in some cases (such as the one in the 
appendix B mentioned) an approximation of Q(*) to lower order in E is sufficient. 
( d )  In connection with epidemic processes (Griffeath 1979, Bailey 1975), much work 
has been done on the velocity of the front (corresponding to our q5+) in the case of 
continuous time and discrete space. It seems that our method should be applicable 
in this case as well (see the suggestion in Mollison (1977)). 
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( e )  It is unclear whether our method is applicable to higher-dimensional cases. If the 
front-which then is a (d  - 1)-dimensional hypersurface-would remain essentially 
plane for n +CO, one would expect properties ( A )  and ( B )  to continue to hold. 
However, if it develops long-range fluctuations, this would no longer be true. 
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